
Pytorch计算数据集的均值和标准差。
img = np.array(Image.open(img_path).convert('RGB')) / 255.0# 准换为RGB的array形式。result = ThreadPool(NUM_THREADS).imap(calc_channel_sum, img_f)# 多线程计算。def calc_channel_sum(img_path):# 计算均值的辅助函数,统计单张图像颜色通道和
·
from itertools import repeat
import os
from multiprocessing.pool import ThreadPool
from pathlib import Path
from PIL import Image
import numpy as np
from tqdm import tqdm
NUM_THREADS = os.cpu_count()
def calc_channel_sum(img_path): # 计算均值的辅助函数,统计单张图像颜色通道和,以及像素数量
img = np.array(Image.open(img_path).convert('RGB')) / 255.0 # 准换为RGB的array形式
h, w, _ = img.shape
pixel_num = h * w
channel_sum = img.sum(axis=(0, 1)) # 各颜色通道像素求和
return channel_sum, pixel_num
def calc_channel_var(img_path, mean): # 计算标准差的辅助函数
img = np.array(Image.open(img_path).convert('RGB')) / 255.0
channel_var = np.sum((img - mean) ** 2, axis=(0, 1))
return channel_var
def mean_and_var(data_path,data_format='*.jpg',decimal_places=4):
"""
计算均值方差
@param data_path: 数据集路径
@param data_format: 图片格式(默认为png)
@param decimal_places: 均值和方差,保留的小数位数(默认为4)
@return:
"""
print("Data root is ",data_path)
train_path = Path(data_path)
img_f = list(train_path.rglob(data_format))
n = len(img_f)
print(f'Data Nums is : {n}')
print("Calculate the mean value")
result = ThreadPool(NUM_THREADS).imap(calc_channel_sum, img_f) # 多线程计算
channel_sum = np.zeros(3)
cnt = 0
pbar = tqdm(enumerate(result), total=n)
for i, x in pbar:
channel_sum += x[0]
cnt += x[1]
mean = channel_sum / cnt
mean=np.around(mean, decimal_places) # 使用around()函数保留小数位数
print('R_mean,G_mean,B_mean is ',mean)
print("Calculate the var value")
result = ThreadPool(NUM_THREADS).imap(lambda x: calc_channel_var(*x), zip(img_f, repeat(mean)))
channel_sum = np.zeros(3)
pbar = tqdm(enumerate(result), total=n)
for i, x in pbar:
channel_sum += x
var = np.sqrt(channel_sum / cnt)
var = np.around(var, decimal_places) # 使用around()函数保留小数位数
print('R_var,G_var,B_var is ', var)
if __name__ == '__main__':
mean_and_var('E:/Data/Data1/test')
# mean_and_var('E:/Data/Data1/train')
# mean_and_var('E:/Data/Data1/val')

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐
所有评论(0)