coco数据集的评价指标
Average Precision(AP) @[ IoU=0.50:0.95 | area=all | maxDets=100 ] = 0.000Average Precision(AP) @[ IoU=0.50| area=all | maxDets=100 ] = 0.000Average Precision(AP) @[ IoU=0.75| area=all | maxDets=100 ]
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
使用centernet代码运行test.py文件对目标检测任务的最终结果进行评估,结果如上图所示。那每一行都代表什么呢?
AP:查准率
IOU=0.50:0.95:表示IOU从0.5到0.95,步长,0.05,即IOU=0.5\0.55\0.6\0.65……0.95共十种IOU,这里将这个10中IOU计算后取了平均值
area:表示目标检测的物体是达吾提还是小物体,大小物体的划分依据
APsmall % AP for small objects: area < 32^2
APmedium % AP for medium objects: 32^2 < area < 96^2
APlarge % AP for large objects: area > 96^2
masDets=100:表示一张图中能检测到的最多的物体数量

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐
所有评论(0)