Quick Draw 数据集使用教程
Quick Draw 数据集使用教程quickdraw-datasetDocumentation on how to access and use the Quick, Draw! Dataset.项目地址: https:/...
Quick Draw 数据集使用教程
1、项目介绍
Quick Draw 数据集是由 Google Creative Lab 开发的一个开源项目,包含了超过 5000 万幅由玩家在游戏 Quick Draw 中绘制的图画。这些图画涵盖了 345 个不同的类别,如动物、日常用品等。每幅图画都被标记为时间戳向量,并附带了元数据,包括玩家被要求绘制的类别以及玩家所在的国家。
该数据集旨在为开发者、研究人员和艺术家提供一个丰富的资源,用于探索、研究和学习。你可以通过访问 quickdraw.withgoogle.com/data 浏览这些被识别的图画。
2、项目快速启动
2.1 下载数据集
你可以通过 Google Cloud Storage 下载 Quick Draw 数据集。以下是下载简化图画的命令示例:
gsutil -m cp 'gs://quickdraw_dataset/full/simplified/*' .
2.2 加载数据集
以下是一个使用 Python 加载简化图画的示例代码:
import numpy as np
# 加载简化图画的 numpy 文件
data = np.load('path_to_simplified_drawing.npy')
# 查看数据
print(data.shape) # 输出数据的形状
print(data[0]) # 输出第一个图画的数据
2.3 解析数据集
以下是一个使用 Python 解析简化图画的示例代码:
import json
# 读取简化图画的 ndjson 文件
with open('path_to_simplified_drawing.ndjson', 'r') as f:
for line in f:
drawing = json.loads(line)
print(drawing) # 输出每一行的图画数据
3、应用案例和最佳实践
3.1 创意和艺术项目
- Letter collages by Deborah Schmidt: 使用 Quick Draw 数据集创建字母拼贴画。
- Faces of Humanity by Tortue Infinite: 通过数据集中的面部图画创建人类面孔的集合。
3.2 数据分析
- How do you draw a circle? by Quartz: 分析玩家如何绘制圆形。
- Forma Fluens by Mauro Martino, Hendrik Strobelt, and Owen Cornec: 通过数据集探索形状的流动。
3.3 机器学习
- Sketch-RNN QuickDraw Dataset: 使用数据集训练 Sketch-RNN 模型,用于生成和识别手绘图画。
- A Neural Representation of Sketch Drawings by David Ha, Douglas Eck: 通过深度学习模型表示手绘图画。
4、典型生态项目
4.1 Sketch-RNN
Sketch-RNN 是一个开源的 TensorFlow 实现,用于训练和生成手绘图画。你可以通过访问 Magenta Project 了解更多信息。
4.2 Facets Dive x Quick Draw
Facets Dive 是一个用于探索和可视化大规模数据集的工具,结合 Quick Draw 数据集,可以创建交互式的数据可视化。
4.3 Deep Learning for Free-Hand Sketch
这是一个关于手绘图画的深度学习调查,涵盖了多个使用 Quick Draw 数据集的研究和应用。
通过以上教程,你可以快速上手并深入了解 Quick Draw 数据集的使用和应用。希望这些内容能帮助你更好地利用这一丰富的开源资源。
魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐


所有评论(0)