在深度学习中将自己的数据集划分成训练集验证集和测试集python脚本并转成YOLO格式的txt文件
在深度学习中将自己的数据集划分成训练集验证集和测试集python脚本并转成YOLO格式的txt文件
·
我的目标文件夹设置如下:
新建一个python文件hf.py,Annotations存放标注好的xml后缀的文件,images存放自己要训练的数据集,hf_txt
存放划分好的txt文件。
# -*- coding: utf-8 -*-
import os
import random
trainval_percent = 0.7
train_percent = 0.7
xmlfilepath = 'Annotations'
txtsavepath = 'images'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('hf_txt/trainval.txt', 'w')
ftest = open('hf_txt/test.txt', 'w')
ftrain = open('hf_txt/train.txt', 'w')
fval = open('hf_txt/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
运行该脚本,将得到
里面存放的是不带后缀名的图片名,随机按比例划分的
划分好之后,再转化为YOLO格式的txt文件转化脚本如下:
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd
sets = ['train', 'val', 'test']
classes = ["yu"]#自己数据集的类别名,说多少写多少,不能有遗漏
abs_path = os.getcwd()
#归一化操作
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(image_id):
in_file = open('Annotations/%s.xml' % (image_id),encoding='utf-8')
out_file = open('labels/%s.txt' % (image_id), 'w',encoding='utf-8')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
b1, b2, b3, b4 = b
# 标注越界修正
if b2 > w:
b2 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('labels/'):
os.makedirs('labels/')
image_ids = open('hf_txt/%s.txt' % (image_set)).read().strip().split()
list_file = open('%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write(abs_path + '/images/%s.png\n' % (image_id))#注意自己数据集的后缀名是png还是jpg
convert_annotation(image_id)
list_file.close()

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐
所有评论(0)