深度学习Keras(六):dogs vs cats数据集(卷积神经网络、VGG16)(三)
import osimport numpy as npimport matplotlib.pyplot as pltfrom keras import layers, models, optimizersfrom keras.applications import VGG16from keras.preprocessing.image import ImageDataGenerator#将VGG1
·
import os
import numpy as np
import matplotlib.pyplot as plt
from keras import layers, models, optimizers
from keras.applications import VGG16
from keras.preprocessing.image import ImageDataGenerator
#将VGG16卷积基实例化
conv_base = VGG16(weights='imagenet',
include_top=False,
input_shape=(150, 150, 3))
base_dir = '/home/wildchap/cats_and_dogs_small'
train_dir = '/home/wildchap/cats_and_dogs_small/train'
test_dir = '/home/wildchap/cats_and_dogs_small/test'
validation_dir = '/home/wildchap/cats_and_dogs_small/validation'
datagen = ImageDataGenerator(rescale=1.0/255)
batch_size = 20
#将图像和标签转换为VGG16所接受的numpy数组
def extract_features(dir, sample_count):
features = np.zeros(shape=(sample_count, 4, 4, 512)) #提取特征形状为每图4*4*512
labels = np.zeros(shape=(sample_count))
#根据传入目录进行分类标签
generator = datagen.flow_from_directory(
dir,
target_size=(150, 150),
batch_size=batch_size,
class_mode='binary')
i = 0
for inputs_batch, labels_batch in generator:
#利用conv_base模型的predict方法来从图像中提取特征
features_batch = conv_base.predict(inputs_batch)
features[i * batch_size : (i+1) * batch_size] = features_batch
labels[i * batch_size : (i+1) * batch_size] = labels_batch
i += 1
if i*batch_size >= sample_count:
break
return features, labels
#转换
train_features, train_labels = extract_features(train_dir, 2000)
test_features, test_labels = extract_features(test_dir, 1000)
validation_features, validation_labels = extract_features(validation_dir, 1000)
#由于要和Dense层连接,所以我们要展开
train_features = np.reshape(train_features, (2000, 4*4*512))
test_features = np.reshape(test_features, (1000, 4*4*512))
validation_features = np.reshape(validation_features, (1000, 4*4*512))
#使用Dropout正则化
model = models.Sequential()
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer=optimizers.RMSprop(lr=1e-5),
loss='binary_crossentropy',
metrics=['acc'])
History = model.fit(train_features, train_labels, epochs=30, batch_size=20, validation_data=(validation_features, validation_labels))
#绘制
acc = History.history['acc']
val_acc = History.history['val_acc']
loss = History.history['loss']
val_loss = History.history['val_loss']
x = range(1, len(acc)+1)
plt.plot(x, acc, 'bo', label='Train acc')
plt.plot(x, val_acc, 'b', label='Validation acc')
plt.xlabel('epochs')
plt.ylabel('accutary')
plt.title('accuracy')
plt.legend()
plt.figure()
plt.plot(x, loss, 'bo', label='Train loss')
plt.plot(x, val_loss, 'b', label='Validation loss')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.title('loss')
plt.legend()
plt.show()

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐
所有评论(0)