数据集分辨率都是300x300,都是贴近地面拍摄,具体看图片

据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):33793

标注数量(xml文件个数):33793

标注数量(txt文件个数):33793

标注类别数:31

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["AdjustableClamp","AdjustableWrench","Battery","Bolt","BoltNutSet","BoltWasher","ClampPart","Cutter","FuelCap","Hammer","Hose","Label","LuggagePart","LuggageTag","MetalPart","MetalSheet","Nail","Nut","PaintChip","Pen","PlasticPart","Pliers","Rock","Screw","Screwdriver","SodaCan","Tape","Washer","Wire","Wood","Wrench"]

每个类别标注的框数:

AdjustableClamp 框数 = 544

AdjustableWrench 框数 = 472

Battery 框数 = 1059

Bolt 框数 = 3300

BoltNutSet 框数 = 514

BoltWasher 框数 = 1017

ClampPart 框数 = 917

Cutter 框数 = 1352

FuelCap 框数 = 548

Hammer 框数 = 760

Hose 框数 = 294

Label 框数 = 1310

LuggagePart 框数 = 738

LuggageTag 框数 = 1686

MetalPart 框数 = 970

MetalSheet 框数 = 394

Nail 框数 = 1193

Nut 框数 = 1303

PaintChip 框数 = 968

Pen 框数 = 483

PlasticPart 框数 = 2008

Pliers 框数 = 2884

Rock 框数 = 662

Screw 框数 = 157

Screwdriver 框数 = 811

SodaCan 框数 = 950

Tape 框数 = 127

Washer 框数 = 2139

Wire 框数 = 2138

Wood 框数 = 206

Wrench 框数 = 2568

总框数:34472

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图片预览:

标注例子:

Logo

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。

更多推荐