【2026大数据毕设选题】 基于Hadoop的中国常见传染病数据分析与可视化系统 Hadoop Spark Hive 毕业设计|选题推荐|爬虫|大数据|大屏|预测|深度学习|数据分析|数据挖掘
基于Hadoop的中国常见传染病数据分析与可视化系统 Hadoop Spark Hive 毕业设计|选题推荐|爬虫|大数据|大屏|预测|深度学习|数据分析|数据挖掘如何用Hadoop处理海量传染病数据?中国常见传染病数据分析与可视化系统揭秘
✍✍计算机毕设指导师**
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。
⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!
⚡⚡有什么问题可以在主页上或文末下联系咨询博客~~
⚡⚡Java、Python、小程序、大数据实战项目集](https://blog.csdn.net/2301_80395604/category_12487856.html)
⚡⚡文末获取源码
温馨提示:文末有CSDN平台官方提供的博客联系方式的名片!
温馨提示:文末有CSDN平台官方提供的博客联系方式的名片!
温馨提示:文末有CSDN平台官方提供的博客联系方式的名片!
文章目录
中国常见传染病数据分析与可视化系统 -简介
基于Hadoop的中国常见传染病数据分析与可视化系统是一套利用大数据技术对我国传染病数据进行全面分析与展示的综合平台,该系统采用Hadoop和Spark作为核心大数据处理框架,结合Python和Java双语言支持,通过Django或Spring Boot构建后端服务,前端则采用Vue、ElementUI和Echarts实现直观的数据可视化展示。系统功能涵盖四大模块:疾病流行病学特征分析、人口特征与疾病关系分析、医疗干预与疾病控制效果分析以及公共卫生系统效能评估,能够对传染病的发病率、死亡率、季节性分布、地域分布、城乡差异、症状特征及年度变化趋势进行深入挖掘,同时分析不同年龄组、性别、并发症状况对疾病的影响,评估疫苗接种、隔离措施、住院治疗等医疗干预的效果,并对公共卫生系统的早期症状识别效率、接触者追踪覆盖率、医疗资源分配等方面进行全面评估,通过HDFS存储海量数据,结合Spark SQL、Pandas和NumPy进行高效数据处理,最终在MySQL数据库支持下,为疾病监测、预警和防控决策提供科学依据。
中国常见传染病数据分析与可视化系统 -技术
大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
数据库:MySQL
中国常见传染病数据分析与可视化系统 -背景
近年来,中国传染病防控形势依然严峻。据国家卫健委疾控局统计,2022年全国法定传染病发病数达760万例,死亡1.4万例,其中乙类传染病占比高达87.3%。COVID-19疫情更是凸显了传染病数据分析与预警系统的重要性。传统的传染病监测系统面临数据量大、处理速度慢、分析维度有限等问题,难以满足当前复杂多变的疫情防控需求。随着大数据技术的发展,Hadoop生态系统为海量医疗数据的存储与分析提供了新的解决方案。国内外研究表明,大数据技术在传染病监测预警中的应用可将疫情发现时间缩短40%以上,准确率提升至85%。然而,目前国内针对中国本土传染病特点的大数据分析系统仍较为缺乏,亟需构建一套基于Hadoop的传染病数据分析与可视化系统,为疾病防控提供数据支持。
开发基于Hadoop的中国常见传染病数据分析与可视化系统具有重大实际意义。在技术层面,该系统将Hadoop、Spark等大数据技术与传染病监测领域深度融合,探索了大数据在公共卫生领域的创新应用模式。在实践层面,系统能够对传染病的流行病学特征进行多维度分析,揭示疾病的时空分布规律和人群易感性差异,为精准防控提供科学依据。对医疗机构而言,系统提供的疫苗接种效果、隔离措施评估等分析结果,可直接指导临床实践和资源配置。对公共卫生管理部门来说,系统构建的传染病风险评估模型和预警指标,能够提前预判疫情走势,优化防控策略。这套系统还可作为教学科研平台,培养大数据与公共卫生交叉复合型人才,推动智慧医疗和数字公共卫生体系建设。## 标题
中国常见传染病数据分析与可视化系统 -视频展示
【2026大数据毕设选题】 基于Hadoop的中国常见传染病数据分析与可视化系统 Hadoop Spark Hive
中国常见传染病数据分析与可视化系统 -图片展示
中国常见传染病数据分析与可视化系统 -代码展示
# 核心功能1: 疾病发病率与死亡率分析
def analyze_disease_mortality_rate(spark_session, data_path):
# 读取HDFS上的传染病数据
disease_df = spark_session.read.parquet(data_path)
# 注册为临时表以便使用Spark SQL
disease_df.createOrReplaceTempView("disease_data")
# 计算各疾病的发病总数、死亡总数及死亡率
mortality_analysis = spark_session.sql("""
SELECT
Disease,
SUM(Reported_Cases) as Total_Cases,
SUM(Deaths) as Total_Deaths,
ROUND(SUM(Deaths) / SUM(Reported_Cases) * 100, 2) as Mortality_Rate,
COUNT(DISTINCT Province) as Affected_Provinces,
AVG(Days_Hospitalized) as Avg_Hospitalization
FROM disease_data
GROUP BY Disease
ORDER BY Total_Cases DESC
""")
# 转换为Pandas DataFrame以便进一步处理
pandas_df = mortality_analysis.toPandas()
# 计算全国总体死亡率
total_cases = pandas_df['Total_Cases'].sum()
total_deaths = pandas_df['Total_Deaths'].sum()
overall_mortality = round((total_deaths / total_cases) * 100, 2)
# 识别高危疾病(死亡率超过全国平均水平的疾病)
high_risk_diseases = pandas_df[pandas_df['Mortality_Rate'] > overall_mortality]
# 计算每个疾病的严重程度指数(综合考虑发病数、死亡率和平均住院时间)
pandas_df['Severity_Index'] = (
pandas_df['Total_Cases'] / pandas_df['Total_Cases'].max() * 0.5 +
pandas_df['Mortality_Rate'] / pandas_df['Mortality_Rate'].max() * 0.3 +
pandas_df['Avg_Hospitalization'] / pandas_df['Avg_Hospitalization'].max() * 0.2
)
# 保存分析结果到HDFS
result_path = "/user/hadoop/disease_analysis/mortality_analysis"
spark_session.createDataFrame(pandas_df).write.mode("overwrite").parquet(result_path)
return {
"mortality_analysis": pandas_df.to_dict('records'),
"overall_mortality": overall_mortality,
"high_risk_diseases": high_risk_diseases.to_dict('records')
}
# 核心功能2: 疾病的季节性和地域分布特征分析
def analyze_disease_spatiotemporal_patterns(spark_session, data_path):
# 读取HDFS上的传染病数据
disease_df = spark_session.read.parquet(data_path)
disease_df.createOrReplaceTempView("disease_data")
# 分析疾病的季节性分布
seasonal_analysis = spark_session.sql("""
SELECT
Disease,
Season,
SUM(Reported_Cases) as Season_Cases,
ROUND(SUM(Reported_Cases) * 100.0 / SUM(SUM(Reported_Cases)) OVER (PARTITION BY Disease), 2) as Season_Percentage
FROM disease_data
GROUP BY Disease, Season
ORDER BY Disease, Season_Cases DESC
""")
# 分析疾病的月度分布
monthly_analysis = spark_session.sql("""
SELECT
Disease,
Month,
SUM(Reported_Cases) as Monthly_Cases,
AVG(Reported_Cases) as Avg_Monthly_Cases,
MAX(Reported_Cases) as Max_Monthly_Cases
FROM disease_data
GROUP BY Disease, Month
ORDER BY Disease, Month
""")
# 分析疾病的地域分布
geographic_analysis = spark_session.sql("""
SELECT
Disease,
Province,
SUM(Reported_Cases) as Province_Cases,
SUM(Deaths) as Province_Deaths,
ROUND(SUM(Deaths) * 100.0 / SUM(Reported_Cases), 2) as Province_Mortality_Rate,
COUNT(DISTINCT Month) as Months_Reported
FROM disease_data
GROUP BY Disease, Province
ORDER BY Disease, Province_Cases DESC
""")
# 计算疾病的季节性指数(衡量疾病的季节性强度)
seasonal_df = seasonal_analysis.toPandas()
monthly_df = monthly_analysis.toPandas()
# 使用变异系数(CV)衡量季节性波动
seasonality_index = {}
for disease in monthly_df['Disease'].unique():
disease_data = monthly_df[monthly_df['Disease'] == disease]
mean_cases = disease_data['Monthly_Cases'].mean()
std_cases = disease_data['Monthly_Cases'].std()
cv = std_cases / mean_cases if mean_cases > 0 else 0
seasonality_index[disease] = round(cv, 2)
# 识别高季节性疾病(CV值大于0.5的疾病)
high_seasonal_diseases = [disease for disease, index in seasonality_index.items() if index > 0.5]
# 计算地域聚集性指数(基尼系数)
geographic_df = geographic_analysis.toPandas()
gini_coefficients = {}
for disease in geographic_df['Disease'].unique():
disease_data = geographic_df[geographic_df['Disease'] == disease]
cases = disease_data['Province_Cases'].values
cases = np.sort(cases)
n = len(cases)
index = np.arange(1, n+1)
gini = (2 * np.sum(index * cases) / (n * np.sum(cases))) - (n + 1) / n
gini_coefficients[disease] = round(gini, 2)
# 保存分析结果
results = {
"seasonal_analysis": seasonal_df.to_dict('records'),
"monthly_analysis": monthly_df.to_dict('records'),
"geographic_analysis": geographic_df.to_dict('records'),
"seasonality_index": seasonality_index,
"high_seasonal_diseases": high_seasonal_diseases,
"geographic_concentration": gini_coefficients
}
return results
# 核心功能3: 疫苗接种对疾病发生的影响分析
def analyze_vaccine_effectiveness(spark_session, data_path):
# 读取HDFS上的传染病数据
disease_df = spark_session.read.parquet(data_path)
disease_df.createOrReplaceTempView("disease_data")
# 分析疫苗接种对疾病发生率的影响
vaccine_effect = spark_session.sql("""
SELECT
Disease,
Vaccinated,
COUNT(*) as Patient_Count,
SUM(Reported_Cases) as Total_Cases,
SUM(Deaths) as Total_Deaths,
ROUND(SUM(Deaths) * 100.0 / SUM(Reported_Cases), 2) as Mortality_Rate,
AVG(Days_Hospitalized) as Avg_Hospitalization,
SUM(CASE WHEN ICU_Admission = 1 THEN 1 ELSE 0 END) as ICU_Admissions,
ROUND(SUM(CASE WHEN ICU_Admission = 1 THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as ICU_Rate
FROM disease_data
GROUP BY Disease, Vaccinated
ORDER BY Disease, Vaccinated
""")
# 转换为Pandas DataFrame进行深入分析
vaccine_df = vaccine_effect.toPandas()
# 计算疫苗保护效果
vaccine_effectiveness = []
for disease in vaccine_df['Disease'].unique():
disease_data = vaccine_df[vaccine_df['Disease'] == disease]
if len(disease_data) >= 2: # 确保有接种和未接种的数据
vacc_data = disease_data[disease_data['Vaccinated'] == 1]
unvacc_data = disease_data[disease_data['Vaccinated'] == 0]
if not vacc_data.empty and not unvacc_data.empty:
# 计算发病率降低比例
vacc_cases_rate = vacc_data['Total_Cases'].values[0] / vacc_data['Patient_Count'].values[0]
unvacc_cases_rate = unvacc_data['Total_Cases'].values[0] / unvacc_data['Patient_Count'].values[0]
case_reduction = (1 - (vacc_cases_rate / unvacc_cases_rate)) * 100 if unvacc_cases_rate > 0 else 0
# 计算死亡率降低比例
vacc_mortality = vacc_data['Mortality_Rate'].values[0]
unvacc_mortality = unvacc_data['Mortality_Rate'].values[0]
mortality_reduction = (1 - (vacc_mortality / unvacc_mortality)) * 100 if unvacc_mortality > 0 else 0
# 计算重症率降低比例
vacc_icu_rate = vacc_data['ICU_Rate'].values[0]
unvacc_icu_rate = unvacc_data['ICU_Rate'].values[0]
icu_reduction = (1 - (vacc_icu_rate / unvacc_icu_rate)) * 100 if unvacc_icu_rate > 0 else 0
# 计算住院时间减少比例
vacc_hospitalization = vacc_data['Avg_Hospitalization'].values[0]
unvacc_hospitalization = unvacc_data['Avg_Hospitalization'].values[0]
hospitalization_reduction = (1 - (vacc_hospitalization / unvacc_hospitalization)) * 100 if unvacc_hospitalization > 0 else 0
# 综合保护效果评分(权重可调整)
protection_score = (
case_reduction * 0.4 +
mortality_reduction * 0.3 +
icu_reduction * 0.2 +
hospitalization_reduction * 0.1
)
vaccine_effectiveness.append({
'Disease': disease,
'Case_Reduction_Percent': round(case_reduction, 2),
'Mortality_Reduction_Percent': round(mortality_reduction, 2),
'ICU_Reduction_Percent': round(icu_reduction, 2),
'Hospitalization_Reduction_Percent': round(hospitalization_reduction, 2),
'Overall_Protection_Score': round(protection_score, 2)
})
# 按年龄组分析疫苗效果
age_vaccine_effect = spark_session.sql("""
SELECT
Disease,
Age_Group,
Vaccinated,
COUNT(*) as Patient_Count,
SUM(Reported_Cases) as Total_Cases,
SUM(Deaths) as Total_Deaths,
ROUND(SUM(Deaths) * 100.0 / NULLIF(SUM(Reported_Cases), 0), 2) as Mortality_Rate
FROM disease_data
GROUP BY Disease, Age_Group, Vaccinated
ORDER BY Disease, Age_Group, Vaccinated
""")
# 分析不同年龄组的疫苗保护效果差异
age_vaccine_df = age_vaccine_effect.toPandas()
age_effectiveness = []
for disease in age_vaccine_df['Disease'].unique():
for age_group in age_vaccine_df['Age_Group'].unique():
subset = age_vaccine_df[(age_vaccine_df['Disease'] == disease) &
(age_vaccine_df['Age_Group'] == age_group)]
if len(subset) >= 2: # 确保有接种和未接种的数据
vacc_data = subset[subset['Vaccinated'] == 1]
unvacc_data = subset[subset['Vaccinated'] == 0]
if not vacc_data.empty and not unvacc_data.empty:
# 计算该年龄组的疫苗保护效果
vacc_mortality = vacc_data['Mortality_Rate'].values[0]
unvacc_mortality = unvacc_data['Mortality_Rate'].values[0]
mortality_reduction = (1 - (vacc_mortality / unvacc_mortality)) * 100 if unvacc_mortality > 0 else 0
age_effectiveness.append({
'Disease': disease,
'Age_Group': age_group,
'Mortality_Reduction_Percent': round(mortality_reduction, 2)
})
# 保存分析结果
results = {
"vaccine_effect_summary": vaccine_df.to_dict('records'),
"vaccine_effectiveness": vaccine_effectiveness,
"age_group_effectiveness": age_effectiveness
}
return results
中国常见传染病数据分析与可视化系统-结语
【2026大数据毕设选题】 基于Hadoop的中国常见传染病数据分析与可视化系统 Hadoop Spark Hive
⚡⚡如何用Hadoop处理海量传染病数据?中国常见传染病数据分析与可视化系统揭秘
⚡⚡大家都可点赞、收藏、关注、有技术问题或者获取源代码,如果遇到问题,欢迎在评论区一起交流探讨!

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐
所有评论(0)