7种常见的数据分析基本思路,满足你职场95%的需求
这几天在私信里常看到有新入门的数据分析师来跟我吐槽:“工作时没有自己的分析思路,常常是机械地完成老板布置的任务,无法形成自己的数据分析方法论。”的确,作为一名商业数据分析师我也能理解初入行的同学的烦恼,我们在进行数据分析时,经常要使用到一些基本的分析思维,如时间趋势、下钻查询、对比等。但苦于缺少一个完整的数据分析思路整合。接下来就分享我个人从事数据分析领域以来总结的常见的7种数据分析基本思路,能够
这几天在私信里常看到有新入门的数据分析师来跟我吐槽:“工作时没有自己的分析思路,常常是机械地完成老板布置的任务,无法形成自己的数据分析方法论。”
的确,作为一名商业数据分析师我也能理解初入行的同学的烦恼,我们在进行数据分析时,经常要使用到一些基本的分析思维,如时间趋势、下钻查询、对比等。但苦于缺少一个完整的数据分析思路整合。
接下来就分享我个人从事数据分析领域以来总结的常见的7种数据分析基本思路,能够满足你职场大部分需求:
一、数据分析前的准备
在开始进行数据分析之前,需要思考我这次分析结果的用途以及希望传达给查看者的信息。
只有明确分析清楚目的才能直观展示数据分析结果(划重点)。
二、数据分析时的七种思路
下面描述了大家可以采用的7种不同的数据分析基本思路,并为每种方法提供了示例说明。
三、数据分析后的注意事项
1.突出数据重点
数据展示要简洁、突出重点,如果不需要标题、图例或网格线,可取消设置。目前国内常用Excel和一些可视化工具来展示数据,可视化工具如TB、FineBI都强调无代码、敏捷,可视化,一改传统BI工具SAP BO、IBM家的cognos(不过近几年貌似都在研发云BI)。
成熟的行业认可的BI工具如FineBI(国内)和 Tableau(国外),也都很推荐。
以下是我使用FineBI做出的数据展示图,大家可以根据修改前后的观感,来感受数据展示简洁的重要性。

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐
所有评论(0)