长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析等领域中的应用
分析长时间序列卫星遥感产品数据应用时需要掌握的经验及编程技巧,以期辅助解决陆地生态系统研究中相关的科学难题,为今后陆地生态系统“碳汇”能力的评估提供科学决策依据。
植被是陆地生态系统中最重要的组分之一,也是对气候变化最敏感的组分,其在全球变化过程中起着重要作用,能够指示自然环境中的大气、水、土壤等成分的变化,其年际和季节性变化可以作为地球气候变化的重要指标。此外,由于生态工程保护建设和植被自然生长等因素,中国陆地生态系统发挥了重要的碳汇作用。因此,定量评估植被时空动态变化是制定生态系统可持续发展目标和衡量生态系统固碳潜力的重要前提,卫星遥感数据衍生的生态参量产品为研究长时间序列全球及区域植被时空变化提供了重要数据源。目前已经从卫星获取的遥感数据反演了许多长时序生物物理参量产品,如GIMMS3g NDVI/LAI/FAPAR、MODIS NDVI/LAI/FAPAR/ GPP、GLASS LAI/FVC/GPP等,并且已经广泛应用于全球或区域尺度植被变化趋势及格局分析。
【教 程】长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析等领域中的应用
专题一:长时序遥感产品在全球变化/植被变绿/植被物候等方面的应用 |
|
专题二:MODIS遥感数据产品预处理 |
|
专题三:长时序MODIS遥感数据产品时间序列重构 |
|
专题四:基于GIMMS 3g和MODIS NDVI构建更长时序遥感数据 |
|
专题五:植被物候提取与分析实践应用 |
|
专题六:植被变绿趋势分析实践应 |
|
专题七:植被变绿与生态系统固碳一致性分 |
|
专题八:草地生长关键参数/生物量遥感估算及趋势分析 |
|

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐
所有评论(0)