一.迪克斯特拉算法

迪克斯特拉算法优先队列解决实现单源最短路径问题 找到当前距离值最小的首结点,(优先队列)更新他与邻居的距离, 负边的情况无法处理,每次认为已经找到最小的点,下次不会处理
public class dijkstra {
    public static class vartex{
        String name;
        List <Edge> edges;
        int dist=INF;
        static final Integer  INF=Integer.MAX_VALUE;
        boolean visited;
        vartex prev=null;

        public vartex(String name) {
            this.name = name;
        }
    }
    static class Edge{
        public Edge(vartex linked, int weight) {
            this.linked = linked;
            this.weight = weight;
        }

        vartex linked;
        int weight;
    }




    public static void main(String[] args) {
        vartex v1=new vartex("v1");
        vartex v2=new vartex("v2");
        vartex v3=new vartex("v3");
        vartex v4=new vartex("v4");
        vartex v5=new vartex("v5");
        vartex v6=new vartex("v6");
        v1.edges=List.of(new Edge(v3,9),new Edge(v2,7),new Edge(v6,14));
        v2.edges=List.of(new Edge(v4,15));
        v3.edges=List.of(new Edge(v4,11),new Edge(v6,2));
        v4.edges= List.of(new Edge(v5,6));
        v5.edges= List.of();
        v6.edges=List.of(new Edge(v5,9));
        List<vartex> graph=List.of(v1,v2,v3,v4,v5,v6);

        dijkstra(graph,v1);


    }

    private static void dijkstra(List<vartex> graph, vartex source) {
        source.dist=0;
        PriorityQueue<vartex>queue=new PriorityQueue<>(Comparator.comparingInt(v->v.dist));

        for (vartex v:graph){
            queue.offer(v);//入队
        }




        while (!queue.isEmpty()) {
//            for (int i = 0; i < 6; i++) {
//                queue.offer(graph.get(i));
//            }
//            System.out.println(queue);

            //1.找到当前值最小的首结点
            vartex peek = queue.peek();


            //2.遍历所有邻居,更新他们的距离
            if(!peek.visited) {
                for (Edge edge : peek.edges) {
                    vartex n = edge.linked;
                    int dist = peek.dist + edge.weight;
                    if (dist < n.dist)
                        n.dist = dist;
                    n.prev = peek;
                }
                peek.visited=true;
            }

            //3.当前结点出队
            vartex poll= queue.poll();

        }



        for(vartex v:graph){
            System.out.println(v.name+" "+v.dist+" "+(v.prev!=null?v.prev.name:null));


        }
    }






}

 二.贝尔曼福特算法

贝尔曼福特算法,单源最短路径可以处理负边
循环顶点次数减一次,遍历每个顶点的每条边,更新与邻居之间的距离
贝尔曼,有负环出现,检测负环只需要看循环顶点个数减一次后是否再次进入if
package LanQiao.MinDist;
import java.util.List;
//贝尔曼福特算法,单源最短路径
// 可以处理负边
//循环顶点次数减一次,遍历每个顶点每条边,更新距离
//贝尔曼,有负环出现,检测负环只需要看循环顶点个数减一次后是否再次进入if

public class BellmanFord {

    public static class vartex {
        String name;
        List<Edge> edges;
        int dist = INF;
        static final Integer INF = Integer.MAX_VALUE;
        boolean visited;
        vartex prev=null;

        public vartex(String name) {
            this.name = name;
        }
    }

    static class Edge {
        public Edge(vartex linked, int weight) {
            this.linked = linked;
            this.weight = weight;
        }

        vartex linked;
        int weight;


    }


    public static void main(String[] args) {
        vartex v1 = new vartex("v1");
        vartex v2 = new vartex("v2");
        vartex v3 = new vartex("v3");
        vartex v4 = new vartex("v4");

        v1.edges = List.of(new Edge(v2, 2), new Edge(v3, 1));
        v2.edges = List.of(new Edge(v3, -2));
        v3.edges = List.of(new Edge(v4, 1));
        v4.edges = List.of();

        List<vartex> graph = List.of(v1, v2, v3, v4);
        bellmanFoed(graph, v1);



    }

    private static void bellmanFoed(List<vartex> graph, vartex v1) {
        v1.dist = 0;
        for (int i = 0; i < graph.size() - 1; i++) {
            for (vartex s : graph) {//遍历每个顶点每条边
                for (Edge edge : s.edges) {//设置边的起点终点

                    vartex e = edge.linked;
                    if (s.dist != Integer.MAX_VALUE && edge.weight + s.dist < e.dist) {//注意条件
                        e.dist = edge.weight + s.dist;
                        e.prev=s;
                    }
                }
            }

        }
        for (vartex v:graph){
            System.out.println(v.name+" "+v.dist+" "+(v.prev!=null?v.prev.name:null));
        }
    }


}

三.弗洛伊德算法 

FloydWarShall求多源最短路径长度
    创建距离矩阵
    3重循环
    通过v1,v2,v3,v4借路到其他顶点,
    j到i到距离加上i到k的距离等于j到k的距离

    先写大变是最里层,遍历中间节点那一行元素,纵坐标
     小变是中间节点(借路的那个节点),最外层

    /可处理负边,不能处理负环
    判断负环,需要每次判断对角线是否出现负数(正常情况下对角线都是0)

package LanQiao.MinDist;

import java.util.Collection;
import java.util.List;
import java.util.Map;
import java.util.stream.Collector;
import java.util.stream.Collectors;

public class FloydWarShall {
    //FloydWarShall求多源最短路径长度
    //创建距离矩阵
    // 3重循环
    //通过v1,v2,v3,v4借路到其他顶点,
    //j到i到距离加上i到k的距离等于j到k的距离

    //先写大变是最里层,遍历中间节点那一行元素,纵坐标
    // 小变是中间节点(借路的那个节点),最外层

    // 可处理负边,不能处理负环
    //判断负环,需要每次判断对角线是否出现负数(正常情况下对角线都是0)
    public static class vartex {
        String name;
        List<Edge> edges;
        int dist = INF;
        static final Integer INF = Integer.MAX_VALUE;
        boolean visited;


        public vartex(String name) {
            this.name = name;
        }
    }

    static class Edge {
        public Edge(vartex linked, int weight) {
            this.linked = linked;
            this.weight = weight;
        }

        vartex linked;
        int weight;


    }

    public static void main(String[] args) {
        vartex v1 = new vartex("v1");
        vartex v2 = new vartex("v2");
        vartex v3 = new vartex("v3");
        vartex v4 = new vartex("v4");

        v1.edges = List.of(new Edge(v3, -2));
        v2.edges = List.of(new Edge(v1, 4), new Edge(v3, 3));
        v3.edges = List.of(new Edge(v4, 2));
        v4.edges = List.of(new Edge(v2, -1));
        List<vartex> graph = List.of(v1, v2, v3, v4);

        floydWarShall(graph);


    }

    private static void floydWarShall(List<vartex> graph) {
        int n = graph.size();
        vartex prev[][]=new vartex[n][n];
        int[][] dist = new int[n][n];//创建距离矩阵
        for (int i = 0; i < n; i++) {
            vartex v = graph.get(i);
            Map<vartex, Integer> map = v.edges.stream().collect(Collectors.toMap(e -> e.linked, e -> e.weight));
            for (int j = 0; j < n; j++) {
                vartex u = graph.get(j);
                if (v == u) {
                    dist[i][j] = 0;//元素相同距离为0
                } else {
                    //从v的Linked找到u,若成功返回对应的weight,若失败返回最大值
                    dist[i][j] = map.getOrDefault(u, Integer.MAX_VALUE);
//                    prev[i][j]=map.get(j);

                }
            }
        }
        print(dist);

        //核心思想借路到其他顶点
        for (int i = 0; i < dist.length; i++) {
            for (int j = 0; j < dist.length; j++) {
                for (int k = 0; k < dist.length; k++) {
                    if (dist[j][i] != Integer.MAX_VALUE && dist[i][k] != Integer.MAX_VALUE && dist[j][i] + dist[i][k] < dist[j][k]) {
                        dist[j][k] = dist[j][i] + dist[i][k];
                    }
                    //通过v1,v2,v3,v4借路到其他顶点,
                    //j到i到距离加上i到k的距离等于j到k的距离
                    // 3重循环
                    //先写大变是最里层,遍历中间节点那一行元素,纵坐标
                    // 小变是中间节点(借路的那个节点),最外层

                }
            }
            print(dist);
            System.out.println();
        }



    }

    private static void print(int[][] dist) {
        for (int i = 0; i < dist.length; i++) {
            for (int j = 0; j < dist.length; j++) {
                if (dist[i][j] == Integer.MAX_VALUE) {
                    System.out.print("&" + " ");
                } else {
                    System.out.print(dist[i][j] + " ");
                }

            }
            System.out.println();
        }

    }
}



 

Logo

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。

更多推荐