一、什么是LRU Cache

LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。 什么是Cache?狭义的Cache指的是位于CPU和主存间的快速RAM, 通常它不像系统主存那样使用DRAM技术,而使用昂贵但较快速的SRAM技术。 广义上的Cache指的是位于速度相差较大的两种硬件之间, 用于协调两者数据传输速度差异的结构。除了CPU与主存之间有Cache, 内存与硬盘之间也有Cache,乃至在硬盘与网络之间也有某种意义上的Cache── 称为Internet临时文件夹或网络内容缓存等。

在这里插入图片描述

Cache的容量有限,因此当Cache的容量用完后,而又有新的内容需要添加进来时, 就需要挑选并舍弃原有的部分内容,从而腾出空间来放新内容。LRU Cache 的替换原则就是将最近最少使用的内容替换掉。其实,LRU译成最久未使用会更形象, 因为该算法每次替换掉的就是一段时间内最久没有使用过的内容。

二、LRU Cache的实现

实现LRU Cache的方法和思路很多,但是要保持高效实现O(1)的put和get,那么使用双向链表和哈希表的搭配是最高效和经典的。使用双向链表是因为双向链表可以实现任意位置O(1)的插入和删除,使用哈希表是因为哈希表的增删查改也是O(1)。

在这里插入图片描述

146. LRU 缓存 - 力扣(LeetCode)

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。

实现 LRUCache 类:

  • LRUCache(int capacity)正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

函数 getput 必须以 O(1) 的平均时间复杂度运行。

代码实现:

class LRUCache {
    typedef list<pair<int, int>>::iterator ListIt;
    int _capacity;
    unordered_map<int, ListIt> _hashmap;
    list<pair<int, int>> _LRUlist;
public:
    LRUCache(int capacity) 
    :_capacity(capacity)
    {
    }
    
    int get(int key) {
        auto it = _hashmap.find(key);
        if(it != _hashmap.end())
        {
            //将该关键字移动到LRU队列头
            ListIt listit = it->second;
            _LRUlist.splice(_LRUlist.begin(), _LRUlist, listit);
            return listit->second;
        }
        else
        {
            return -1;
        }
    }
    
    void put(int key, int value) {
        auto it = _hashmap.find(key);
        if(it == _hashmap.end())
        {
            //判满,如果满了逐出最久未使用的关键字
            if(_hashmap.size() == _capacity)
            {
                pair<int, int> back = _LRUlist.back();
                _hashmap.erase(back.first);
                _LRUlist.pop_back();
            }
            //将关键字插入到LRU队列头
            _LRUlist.push_front(make_pair(key, value));
            _hashmap.insert(make_pair(key, _LRUlist.begin()));
            
        }
        else
        {
            //找到了更新其value值,并将该关键字移动到LRU队列头
            ListIt listit = it->second;
            listit->second = value;
            _LRUlist.splice(_LRUlist.begin(), _LRUlist, listit);
        }
    }
};
Logo

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。

更多推荐