基本概念(强烈推荐)

GAN 基本概念 — PaddleEdu documentation

GAN

2014

论文:Generative Adversarial Nets

CGAN

2014

论文:Conditional Generative Adversarial Nets

DCGAN

2015

论文:Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

WGAN

2017

论文:Wasserstein generative adversarial networks

pix2pix

2017

论文:Image-to-Image Translation with Conditional Adversarial Networks

官方主页链接:Image-to-Image Translation with Conditional Adversarial Networks

CycleGAN

2017

论文:Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

pix2pixHD

2018

论文:High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

官方主页链接:High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

GuaGAN(SPADE)

2019

论文:Semantic Image Synthesis with Spatially-Adaptive Normalization
官方主页链接:https://nvlabs.github.io/SPADE/

GuaGAN2

PoE-GAN

2022

论文:Multimodal Conditional Image Synthesis with Product-of-Experts GANs

官方主页链接:Multimodal Conditional Image Synthesis with Product-of-Experts GANs

Logo

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。

更多推荐