【高中生也能懂的强化学习】【2】多臂老虎机该怎么玩
我们在第 1 章中了解到,强化学习关注智能体和环境交互过程中的学习,这是一种试错型学习(trial-and-error learning)范式。在正式学习强化学习之前,我们需要先了解多臂老虎机问题,它可以被看作简化版的强化学习问题。与强化学习不同,多臂老虎机不存在状态信息,只有动作和奖励,算是最简单的“和环境交互中的学习”的一种形式。多臂老虎机中的探索与利用(exploration vs. exp
前言
我们在第 1 章中了解到,强化学习关注智能体和环境交互过程中的学习,这是一种试错型学习(trial-and-error learning)范式。在正式学习强化学习之前,我们需要先了解多臂老虎机问题,它可以被看作简化版的强化学习问题。与强化学习不同,多臂老虎机不存在状态信息,只有动作和奖励,算是最简单的“和环境交互中的学习”的一种形式。多臂老虎机中的探索与利用(exploration vs. exploitation)问题一直以来都是一个特别经典的问题,理解它能够帮助我们学习强化学习。
问题介绍
问题定义
在多臂老虎机(multi-armed bandit,MAB)问题(见图)中,有一个拥有 K 根拉杆的老虎机,拉动每一根拉杆都对应一个关于奖励的概率分布 R。我们每次拉动其中一根拉杆,就可以从该拉杆对应的奖励概率分布中获得一个奖励 r。我们在各根拉杆的奖励概率分布未知的情况下,从头开始尝试,目标是在操作 T 次拉杆后获得尽可能高的累积奖励。由于奖励的概率分布是未知的,因此我们需要在“探索拉杆的获奖概率”和“根据经验选择获奖最多的拉杆”中进行权衡。“采用怎样的操作策略才能使获得的累积奖励最高”便是多臂老虎机问题。如果是你,会怎么做呢?
下面我们编写代码来实现一个拉杆数为10的多臂老虎机。其中拉动每根拉杆的奖励服从伯努利分布(Bernoulli distribution),即每次拉下拉杆有p的概率获得的奖励为 1,有 1- p的概率获得的奖励为 0。奖励为 1代表获奖,奖励为 0代表没有获奖。
# 导入需要使用的库,其中numpy是支持数组和矩阵运算的科学计算库,而matplotlib是绘图库
import numpy as np
import matplotlib.pyplot as plt
class BernoulliBandit:
""" 伯努利多臂老虎机,输入K表示拉杆个数 """
def __init__(self, K):
self.probs = np.random.uniform(size=K) # 随机生成K个0~1的数,作为拉动每根拉杆的获奖概率
self.best_idx = np.argmax(self.probs) # 获奖概率最大的拉杆
self.best_prob = self.probs[self.best_idx] # 最大的获奖概率
self.K = K
def step(self, k):
# 当玩家选择了k号拉杆后,根据拉动该老虎机的k号拉杆获得奖励的概率返回1(获奖)或0(未获奖)
if np.random.rand() < self.probs[k]:
return 1
else:
return 0
np.random.seed(1) # 设定随机种子,使实验具有可重复性
K = 10
bandit_10_arm = BernoulliBandit(K)
print("随机生成了一个%d臂伯努利老虎机" % K)
print("获奖概率最大的拉杆为%d号,其获奖概率为%.4f" %
(bandit_10_arm.best_idx, bandit_10_arm.best_prob))
随机生成了一个10臂伯努利老虎机
获奖概率最大的拉杆为1号,其获奖概率为0.7203
接下来我们用一个 Solver 基础类来实现上述的多臂老虎机的求解方案。根据前文的算法流程,我们需要实现下列函数功能:根据策略选择动作、根据动作获取奖励、更新期望奖励估值、更新累积懊悔和计数。在下面的 MAB 算法基本框架中,我们将根据策略选择动作、根据动作获取奖励和更新期望奖励估值放在 run_one_step()
函数中,由每个继承 Solver 类的策略具体实现。而更新累积懊悔和计数则直接放在主循环 run()
中。
class Solver:
""" 多臂老虎机算法基本框架 """
def __init__(self, bandit):
self.bandit = bandit
self.counts = np.zeros(self.bandit.K) # 每根拉杆的尝试次数
self.regret = 0. # 当前步的累积懊悔
self.actions = [] # 维护一个列表,记录每一步的动作
self.regrets = [] # 维护一个列表,记录每一步的累积懊悔
def update_regret(self, k):
# 计算累积懊悔并保存,k为本次动作选择的拉杆的编号
self.regret += self.bandit.best_prob - self.bandit.probs[k]
self.regrets.append(self.regret)
def run_one_step(self):
# 返回当前动作选择哪一根拉杆,由每个具体的策略实现
raise NotImplementedError
def run(self, num_steps):
# 运行一定次数,num_steps为总运行次数
for _ in range(num_steps):
k = self.run_one_step()
self.counts[k] += 1
self.actions.append(k)
self.update_regret(k)
补基础:伯努利分布
伯努利分布(Bernoulli distribution)是一种离散概率分布,用于描述只有两种可能结果的随机实验,通常称为“成功”和“失败”(或“1”和“0”)。在伯努利分布中,每次实验成功的概率是固定的,记为 ( p ),而失败的概率则是 ( 1 - p )。这种分布是二项分布的特例,当实验次数为 1 时,二项分布就退化为伯努利分布.
在多臂老虎机问题中,伯努利分布被用来模拟拉动每根拉杆的结果。每次拉动拉杆,都有一定的概率 ( p ) 获得奖励(即“成功”),概率为 ( 1 - p ) 时没有获得奖励(即“失败”)。这种模型适用于描述那些只有两种结果的随机事件,例如抛硬币、点击广告是否产生转化等场景.
当然可以!以下是一个详细的例子来说明伯努利分布的应用:
点击【高中生也能懂的强化学习】【2】多臂老虎机该怎么玩查看全文。

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐
所有评论(0)