AAAI2021联邦学习论文集
目前,已经开放了AAAI2021的Accept Paper List, 本文精选了14篇**联邦学习(Federated Learning)**的入选论文,分类如下:隐私保护(Private Protection)278: Secure Bilevel Asynchronous Vertical Federated Learning with Backward UpdatingQingsong Z
目前,已经开放了AAAI2021的Accept Paper List, 本文精选了14篇**联邦学习(Federated Learning)**的入选论文,分类如下:
隐私保护(Private Protection)
278: Secure Bilevel Asynchronous Vertical Federated Learning with Backward Updating
Qingsong Zhang, Bin Gu, Cheng Deng, Heng Huang
4838: FLAME: Differentially Private Federated Learning in the Shuffle Model
Ruixuan Liu, Yang Cao, Hong Chen, Ruoyang Guo, Masatoshi Yoshikawa
5082: Toward Understanding the Influence of Individual Clients in Federated Learning
Yihao Xue, Chaoyue Niu, Zhenzhe Zheng, Shaojie Tang, Chengfei Lyu, Fan Wu, Guihai Chen
5309: Provably Secure Federated Learning against Malicious Clients
Xiaoyu Cao, Jinyuan Jia, Neil Zhenqiang Gong
梯度与模型参数传播(Gradient and Model Parameter Communication)
3649: On the Convergence of Communication-Efficient Local SGD for Federated Learning
Hongchang Gao, An Xu, Heng Huang
5802: Personalized Cross-Silo Federated Learning on Non-IID Data
Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, Yong Zhang
5847: Model-Sharing Games: Analyzing Federated Learning under Voluntary Participation
Kathleen Donahue, Jon Kleinberg
8990: Curse or Redemption? How Data Heterogeneity Affects the Robustness of Federated
Learning
Syed Zawad, Ahsan Ali, Pin-Yu Chen, Ali Anwar, Yi Zhou, Nathalie Baracaldo, Yuan Tian, Feng Yan
9097: Game of Gradients: Mitigating Irrelevant Clients in Federated Learning
Lokesh Nagalapatti, Ramasuri Narayanam
9798: Federated Block Coordinate Descent Scheme for Learning Global and Personalized Models
Ruiyuan Wu, Anna Scaglione, Hoi-To Wai, Nurullah Karakoc, Kari Hreinsson, Wing-Kin Ma
10069: Adressing Class Imbalance in Federated Learning
Lixu Wang, Shichao Xu, Xiao Wang, Zhu Qi
10266: Defending against Backdoors in Federated Learning with Robust Learning Rate
Mustafa S Ozdayi, Murat Kantarcioglu, Yulia R. Gel
联邦推荐(Federated Recommendation)
444: FedRec++: Lossless Federated Recommendation with Explicit Feedback
Feng Liang, Weike Pan, Zhong Ming
其他
1473: Federated Multi-Armed Bandits
Chengshuai Shi, Cong Shen

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐
所有评论(0)