Python Opencv的人脸检测和人脸识别_cv2(2)
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
因为OpenCv是用C/C++写的,所以需要释放内存
cv2.destroyAllWindows()

上述代码就实现了最简单的读取并显示图像的操作了。
### **1.2、opencv图像灰度转换**
灰度转换就是将图片转换成黑白图像。因为我们在人脸识别时,灰度图像便于识别,
import cv2
读取图像
im = cv2.imread(‘./zxc/2.jpg’)
灰度转换(第一个参数为ndarray对象,第二个参数为cv2中的常量),返回一个ndarray对象
grey = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
将grey保存
cv2.imwrite(‘grey.jpg’, grey)
显示灰度转换后的图像
cv2.imshow(‘grey’, grey)
等待键盘输入
cv2.waitKey(0)
销毁窗口
cv2.destroyAllWindows()


### **1.3、绘制图形**
后续在检测人脸的时候,我们会绘制图形,将人脸框起来。图形的绘制也非常简单.
import cv2
读取图像
im = cv2.imread(‘./zxc/15.jpg’)
在图像im上绘制矩形
“”"
第一个参数为ndarray对象
第二个参数为左上角的坐标(x1, y1)
第三个参数为右下角的坐标(x2, y2)
第四个参数为颜色值,其顺序不同于我们之前的,使用的是BGR
第五个参数为线条宽度
“”"
cv2.rectangle(im, (220, 100), (380, 250), (255, 255, 0), 2)
显示图像
cv2.imshow(‘im’, im)
等待输入
cv2.waitKey(0)
销毁窗口
cv2.destroyAllWindows()

## **二、人脸检测**
### **2.1、获取特征数据**
开始人类检测之前,我们要先获取一个特征数据。在opencv安装目录中,cv2/data文件夹,进入该文件夹后,里面全是特征文件,我们一般选用haarcascade\_frontalface\_default.xml。
**2.1、检测人脸**
我们可以把特征文件复制到我们项目下,也可以直接用绝对路径引用。cv2.CascadeClassifier对象可以用来检测人脸
face_detector = cv2.CascadeClassifier(‘haarcascade_frontalface_default.xml’)
其中,传入参数为特征文件的路径。我们可以选择相对路径,也可以选择绝对路径。完整人类检测代码如下:
import cv2# 加载特征数据face_detector = cv2.CascadeClassifier(‘haarcascade_frontalface_default.xml’)# 读取图片im = cv2.imread(‘./zxc/2.jpg’)# 检测人脸,返回人脸的位置信息faces = face_detector.detectMultiScale(im)# 遍历人脸for x, y, w, h in faces: # 在人脸区域绘制矩形 cv2.rectangle(im, (x, y), (x+w, y+h), (255, 255, 0), 2)# 显示图像cv2.imshow(‘im’, im)cv2.waitKey(0)cv2.destroyAllWindows()
其中detectMultiScale方法返回一个数组对象,这个对象保存了n张人脸的左上角坐标、脸的宽、脸的高。检测效果如下:

**三、人脸识别**
**3.1、训练数据**
训练数据主要有两个部分,人脸信息和标签,其中标签为int列表。我在目录data中准备了钢铁侠和周星驰的图片,钢铁侠为1,周星驰为2。

准备好图像后,我们就可以开始训练数据了,训练数据代码如下:
import cv2import osimport numpy
root_path = “./data/”
lables = []faces = []
def getFacesAndLabels(): “”“读取图片特征和标签”“” global root_path
# 获取人脸检测器 face_detector = cv2.CascadeClassifier(‘haarcascade_frontalface_default.xml’)
# 获取图片路径 folders = os.listdir(root_path) for folder in folders: path = os.path.join(root_path, folder) files = os.listdir(path) for file in files: # 读取图片 path1 = os.path.join(path, file) im = cv2.imread(path1) # 转换灰度 grey = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) # 读取人脸数据 face = face_detector.detectMultiScale(grey) for x, y, w, h in face: # 设置标签,分离文件名称 lables.append(int(folder)) # 设置人脸数据 faces.append(grey[y:y + h, x:x + w])
return faces, lables
调用方法获取人脸信息及标签faces, labels = getFacesAndLabels()# 获取训练对象recognizer = cv2.face.LBPHFaceRecognizer_create()# 训练数据recognizer.train(faces, numpy.array(labels))# 保存训练数据recognizer.write(‘model.yml’)
### **3.2、人脸识别**
我们训练完数据后,就可以进行人脸识别了。在识别之前我们先加载训练数据,然后就是基本的人类检测步骤。最后我们调用predict方法进行人脸识别,在训练数据中匹配人物。
import cv2
加载训练数据集recognizer = cv2.face.LBPHFaceRecognizer_create()recognizer.read(‘./model.yml’)
准备识别的图片im = cv2.imread(‘10.jpg’)grey = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐
所有评论(0)