积化和差公式

sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] \sin \alpha \cos \beta = \frac{1}{2} \left [ \sin(\alpha + \beta) + \sin (\alpha - \beta) \right ] sinαcosβ=21[sin(α+β)+sin(αβ)]

cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] \cos \alpha \sin \beta = \frac{1}{2} \left [ \sin(\alpha + \beta) - \sin (\alpha - \beta) \right ] cosαsinβ=21[sin(α+β)sin(αβ)]

cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] \cos \alpha \cos \beta = \frac{1}{2} \left [ \cos(\alpha + \beta) + \cos (\alpha - \beta) \right ] cosαcosβ=21[cos(α+β)+cos(αβ)]

sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \sin \alpha \sin \beta = - \frac{1}{2} \left [ \cos(\alpha + \beta) - \cos (\alpha - \beta) \right ] sinαsinβ=21[cos(α+β)cos(αβ)]

和差化积公式

sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 \sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} sinα+sinβ=2sin2α+βcos2αβ

sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 \sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2} sinαsinβ=2cos2α+βsin2αβ

cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} cosα+cosβ=2cos2α+βcos2αβ

cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2} cosαcosβ=2sin2α+βsin2αβ

tan ⁡ α + tan ⁡ β = sin ⁡ ( α + β ) cos ⁡ α ⋅ cos ⁡ β \tan \alpha + \tan \beta = \frac{\sin( \alpha + \beta )}{\cos \alpha \cdot \cos \beta} tanα+tanβ=cosαcosβsin(α+β)

归一化公式

sin ⁡ 2 x + c o s 2 x = 1 \sin^2 x + cos^2 x = 1 sin2x+cos2x=1

sec ⁡ 2 x − tan ⁡ 2 x = 1 \sec^2 x - \tan^2 x = 1 sec2xtan2x=1

cosh ⁡ 2 x − sinh ⁡ 2 x = 1 \cosh^2 x - \sinh^2 x= 1 cosh2xsinh2x=1

倍(半)角公式、降(升)幂公式

sin ⁡ 2 x = 1 2 ( 1 − cos ⁡ 2 x ) \sin^2 x = \frac{1}{2} (1 - \cos 2x) sin2x=21(1cos2x)

cos ⁡ 2 x = 1 2 ( 1 + cos ⁡ 2 x ) \cos^2 x = \frac{1}{2} (1 + \cos 2x) cos2x=21(1+cos2x)

tan ⁡ 2 x = 1 − cos ⁡ 2 x 1 + cos ⁡ 2 x \tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x} tan2x=1+cos2x1cos2x

sin ⁡ x = 2 sin ⁡ x 2 cos ⁡ x 2 \sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2} sinx=2sin2xcos2x

cos ⁡ x = 2 cos ⁡ 2 x 2 − 1 = 1 − 2 sin ⁡ 2 x 2 = cos ⁡ 2 x 2 − sin ⁡ 2 x 2 \cos x = 2 \cos^2 \frac{x}{2} - 1 = 1 - 2 \sin^2 \frac{x}{2} = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} cosx=2cos22x1=12sin22x=cos22xsin22x

tan ⁡ x = 2 tan ⁡ ( x / 2 ) 1 − tan ⁡ 2 ( x / 2 ) \tan x = \frac{2 \tan(x / 2)}{1 - \tan^2 (x / 2)} tanx=1tan2(x/2)2tan(x/2)

万能公式

u = tan ⁡ x 2 u = \tan \frac{x}{2} u=tan2x,于是有

sin ⁡ x = 2 u 1 + u 2 \sin x = \frac{2u}{1 + u^2} sinx=1+u22u

cos ⁡ x = 1 − u 2 1 + u 2 \cos x = \frac{1 - u^2}{1 + u^2} cosx=1+u21u2

Logo

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。

更多推荐