cdf

Y = cdf(name,X,A)

Y = cdf(name,X,A,B)

Y = cdf(name,X,A,B,C)

Description

Y = cdf(name,X,A) computes the cumulative distribution function for the one-parameter family of distributions specified by name. A contains parameter values for the distribution. The cumulative distribution function is evaluated at the values in X and its values are returned in Y.

If X and A are arrays, they must be the same size. If X is a scalar, it is expanded to a constant matrix the same size as A. If A is a scalar, it is expanded to a constant matrix the same size as X.

Y is the common size of X and A after any necessary scalar expansion.

Y = cdf(name,X,A,B) computes the cumulative distribution function for two-parameter families of distributions, where parameter values are given in A and B.

If X, A, and B are arrays, they must be the same size. If X is a scalar, it is expanded to a constant matrix the same size as A and B. If either A or B are scalars, they are expanded to constant matrices the same size as X.

Y is the common size of X, A, and B after any necessary scalar expansion.

Y = cdf(name,X,A,B,C) computes the cumulative distribution function for three-parameter families of distributions, where parameter values are given in A, B, and C.

If X, A, B, and C are arrays, they must be the same size. If X is a scalar, it is expanded to a constant matrix the same size as A, B, and C. If any of A, B or C are scalars, they are expanded to constant matrices the same size as X.

Y is the common size of X, A, B, and C after any necessary scalar expansion.

Acceptable strings for name are:

*     'beta' (Beta distribution)

*      'bino' (Binomial distribution)

*      'chi2' (Chi-square distribution)

*      'exp' (Exponential distribution)

*      'ev' (Extreme value distribution)

*      'f' (F distribution)

*      'gam' (Gamma distribution)

*      'gev' (Generalized extreme value distribution)

*      'gp' (Generalized Pareto distribution)

*      'geo' (Geometric distribution)

*      'hyge' (Hypergeometric distribution)

*      'logn' (Lognormal distribution)

*      'nbin' (Negative binomial distribution)

*      'ncf' (Noncentral F distribution)

*      'nct' (Noncentral tdistribution)

*      'ncx2' (Noncentral chi-square distribution)

*      'norm' (Normal distribution)

*      'poiss' (Poisson distribution)

*      'rayl' (Rayleigh distribution)

*      't' (t distribution)

*      'unif' (Uniform distribution)

*      'unid' (Discrete uniform distribution)

*      'wbl' (Weibull distribution)

Logo

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。

更多推荐