【物理应用】多种二维相位解包裹matlab算法
二维相位解包裹根据Itoh方法,可以将一维相位解包裹推广到二维相位解包裹中,可以用以下式子来表示:式中,为点的连续相位,为起始的点的连续相位,为相位图中连接点和点的任意路径,为相位差。拓展后的Itoh方法,要写成代码的话,逻辑其实和一维的情况是一样的,只是原来只遍历一个一维的矩阵(或者数组),现在变为了二维的矩阵(或数组),具体方法如下:选取相位图中的某一行(列)作为起始行(列),遍历相位图的每一
二维相位解包裹
根据Itoh方法,可以将一维相位解包裹推广到二维相位解包裹中,可以用以下式子来表示:
式中, 为
点的连续相位,
为起始的
点的连续相位,
为相位图中连接
点和
点的任意路径,
为相位差。
拓展后的Itoh方法,要写成代码的话,逻辑其实和一维的情况是一样的,只是原来只遍历一个一维的矩阵(或者数组),现在变为了二维的矩阵(或数组),具体方法如下:
选取相位图中的某一行(列)作为起始行(列),遍历相位图的每一行(列),比较相邻两个点的相位值,若相邻两点的相位差大于 pi,则后一个点的相位加2pi ;若相邻两点的相位差小于-pi ,则后一个点的相位减2pi ;若相邻两点的相位差大于-pi且小于pi ,则不需要进行操作直接比较下一个位置。
二维相位解包裹路径问题
从二维相位解包裹的式子中可以看出来,这一个路径积分要保证每一次算出来的点连续相位都一样,那就应该是一个与路径无关的计算过程。但是在实际的相位解包裹的过程中可以发现,选择了不同的路径,往往得到的相位值也不一样,这是实际获取的相位图存在采样率不足导致的相位混叠、获取过程中引入的相位噪声、奇异点等因素导致的,这也导致了正确的二维相位解包裹,是一个与路径有关的问题。
正是因为解包裹过程与路径有关的问题,导致二维相位解包裹变得困难。
为了解决与路径有关的问题,相位解包裹其中一个大类也因此诞生了,空间(空域)相位解包裹(Spatial phase unwrapping),这类方法就是通过选择一条最优的路径去完成全图相位解包裹的,不过这留到以后的文章慢慢讲了。
fprintf('***************************************\n');
fprintf('2D Phase Unwrapping Demo\n');
fprintf('Please select the demo:\n');
fprintf('(1) No noise , no ignored region\n');
fprintf(' 2. With noise, no ignored region\n');
fprintf(' 3. No noise , with ignored region\n');
fprintf(' 4. With noise, with ignored region\n');
while (1)
user_input = input('Your selection (1-4): ', 's');
user_input = strip(user_input);
% if the user does not supply anything, select the default
if strcmp(user_input, '')
fprintf('Demo 1 is selected\n');
user_input = '1';
end
if length(user_input) == 1 && sum(user_input == '1234') == 1
break;
else
fprintf('Invalid input\n');
end
end
[X, Y] = meshgrid(linspace(-1, 1, 512) * 5);
img = -(X.*X + Y.*Y);
fprintf('Image size: %dx%d pixels\n', size(img,1), size(img,2));
% add noise
if any(user_input == '24')
img = img + randn(size(X)) * 0.5;
end
% add an ignored region
if any(user_input == '34')
img(end/4:3*end/4,end/4:3*end/4) = nan;
end
% wrap the image
wimg = wrapTo2Pi(img);
tic;
unwrap_img = unwrap_phase(wimg);
toc;
subplot(221);
pcolor(img);
shading flat;
set(gca, 'ydir', 'reverse');
title('Original phase');
subplot(222);
pcolor(wimg);
shading flat;
set(gca, 'ydir', 'reverse');
title('Wrapped phase');
subplot(223);
pcolor(unwrap_img);
shading flat;
set(gca, 'ydir', 'reverse');
title('Unwrapped phase');
subplot(224);
pcolor(wrapTo2Pi(unwrap_img));
shading flat;
set(gca, 'ydir', 'reverse');
title('Rewrap of unwrapped phase');
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐
所有评论(0)