pytorch采坑(Expected all tensors to be on the same device, but found at least two devices, cpu and cuda:0)

问题描述

pytorch版本:2.0.1+cu117

使用pytorch的时候,我将模型部署到gpu上,然后将输入也部署到gpu上,但是却出现了如下报错

在这里插入图片描述
贴上我的源代码:

import torch.nn as nn
import torch.nn.functional as F
import torch


class Modeltest(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv1d(1, 20, 5)
        self.conv2 = nn.Conv1d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

input = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9,
                      10]).to(device).type(torch.FloatTensor)

input = torch.reshape(input, (1, -1))

modeltest = Modeltest().to(device)

output = modeltest(input)

output2 = output.sum() * 0.1

print(output.device)
print(output2.device)


从代码中可以看出,我定义了input,并写了to(device),然后对input进行了reshape操作,结果出现了报错

解决方案

我们最开始定义的input确实是在gpu上,但是使用了reshape之后,相当于重新定义了一个input,而默认情况下,新定义的变量都是在cpu上的,所以出现了问题,正确的代码应该如下:

import torch.nn as nn
import torch.nn.functional as F
import torch


class Modeltest(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv1d(1, 20, 5)
        self.conv2 = nn.Conv1d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

input = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9,
                      10]).type(torch.FloatTensor)

input = torch.reshape(input, (1, -1)).to(device)

modeltest = Modeltest().to(device)

output = modeltest(input)

output2 = output.sum() * 0.1

print(output.device)
print(output2.device)


或者第一个input定义的时候直接使用reshape,也可以,如下:

import torch.nn as nn
import torch.nn.functional as F
import torch


class Modeltest(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv1d(1, 20, 5)
        self.conv2 = nn.Conv1d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

input = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9,
                      10]).type(torch.FloatTensor).reshape(1, -1).to(device)

modeltest = Modeltest().to(device)

output = modeltest(input)

output2 = output.sum() * 0.1

print(output.device)
print(output2.device)
Logo

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。

更多推荐