maven依赖

org.apache.kafka

kafka-clients

0.10.1.0

注意:kafka-clients版本需要0.10.1.0以上,因为调用了新增接口endOffsets;

lag=logsize-offset

logsize通过consumer的endOffsets接口获得;offset通过consumer的committed接口获得;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.Properties;

import org.apache.kafka.clients.consumer.KafkaConsumer;

import org.apache.kafka.clients.consumer.OffsetAndMetadata;

import org.apache.kafka.common.PartitionInfo;

import org.apache.kafka.common.TopicPartition;

public class KafkaConsumeLagMonitor {

public static Properties getConsumeProperties(String groupID, String bootstrap_server) {

Properties props = new Properties();

props.put("group.id", groupID);

props.put("bootstrap.servers", bootstrap_server);

props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

return props;

}

public static void main(String[] args) {

String bootstrap_server = args[0];

String groupID = args[1];

String topic = args[2];

Map endOffsetMap = new HashMap();

Map commitOffsetMap = new HashMap();

Properties consumeProps = getConsumeProperties(groupID, bootstrap_server);

System.out.println("consumer properties:" + consumeProps);

//查询topic partitions

KafkaConsumer consumer = new KafkaConsumer(consumeProps);

List topicPartitions = new ArrayList();

List partitionsFor = consumer.partitionsFor(topic);

for (PartitionInfo partitionInfo : partitionsFor) {

TopicPartition topicPartition = new TopicPartition(partitionInfo.topic(), partitionInfo.partition());

topicPartitions.add(topicPartition);

}

//查询log size

Map endOffsets = consumer.endOffsets(topicPartitions);

for (TopicPartition partitionInfo : endOffsets.keySet()) {

endOffsetMap.put(partitionInfo.partition(), endOffsets.get(partitionInfo));

}

for (Integer partitionId : endOffsetMap.keySet()) {

System.out.println(String.format("at %s, topic:%s, partition:%s, logSize:%s", System.currentTimeMillis(), topic, partitionId, endOffsetMap.get(partitionId)));

}

//查询消费offset

for (TopicPartition topicAndPartition : topicPartitions) {

OffsetAndMetadata committed = consumer.committed(topicAndPartition);

commitOffsetMap.put(topicAndPartition.partition(), committed.offset());

}

//累加lag

long lagSum = 0l;

if (endOffsetMap.size() == commitOffsetMap.size()) {

for (Integer partition : endOffsetMap.keySet()) {

long endOffSet = endOffsetMap.get(partition);

long commitOffSet = commitOffsetMap.get(partition);

long diffOffset = endOffSet - commitOffSet;

lagSum += diffOffset;

System.out.println("Topic:" + topic + ", groupID:" + groupID + ", partition:" + partition + ", endOffset:" + endOffSet + ", commitOffset:" + commitOffSet + ", diffOffset:" + diffOffset);

}

System.out.println("Topic:" + topic + ", groupID:" + groupID + ", LAG:" + lagSum);

} else {

System.out.println("this topic partitions lost");

}

consumer.close();

}

}

另外一个思路可参考kafka源码kafka.tools.ConsumerOffsetChecker实现,offset直接读取 zk节点内容,logsize通过consumer的getOffsetsBefore方法获取,整体来说,较麻烦;

Logo

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。

更多推荐