SIPaKMeD 数据集下载 bmp和dat格式转png掩膜方案
SIPaKMeD 数据集下载 bmp和dat格式转png掩膜方案将原始dat文件转换为png掩膜
·
SIPaKMeD 数据集下载 bmp和dat格式转png掩膜方案
SIPaKMeD 数据集下载
直接从官网下载即可,该数据集网站在国内没有被墙,或者可以科学上网加速下载,官网链接:
https://www.cs.uoi.gr/~marina/sipakmed.html
在网站下部可以看见五个下载选项,选择自己需要下载的即可
bmp和dat格式转png图片和png掩膜
原始数据集图片为bmp格式和dat的分割标注数据,其中dat文件中为x,y点对应bmp图片,这些xy点围城的圈即为被标注物的边缘信息,可以用python读取原始bmp文件,并将对应坐标点连线,填充即可
代码贴在下方,自行复制即可,仅需修改main函数中的原始文件路径和存储路径,即图中部分
代码如下:
import numpy as np
from PIL import Image
import os
import matplotlib as plt
from scipy import ndimage
import cv2
def draw_line(image, x1, y1, x2, y2):
"""Draw a line on a binary image using Bresenham's line algorithm."""
dx = abs(x2 - x1)
dy = abs(y2 - y1)
x, y = x1, y1
sx = -1 if x1 > x2 else 1
sy = -1 if y1 > y2 else 1
if dx > dy:
err = dx / 2.0
while x != x2:
image[y, x] = 1
err -= dy
if err < 0:
y += sy
err += dx
x += sx
else:
err = dy / 2.0
while y != y2:
image[y, x] = 1
err -= dx
if err < 0:
x += sx
err += dy
y += sy
image[y, x] = 1
return image
def transformImage(origin_path, image_name, mask_name, save_path):
image_path = origin_path + image_name
mask_path = origin_path + mask_name
img = Image.open(image_path)
y_y, x_x = img.size
# Load the segmentation information from the DAT file
with open(mask_path, 'r') as f:
# Skip the first line of the file, which contains a header
next(f)
# Read the coordinates of the boundary points
points = []
for line in f:
x, y = line.split(',')
points.append((int(float(x)), int(float(y))))
# Create a binary mask with the same dimensions as the BMP image
mask = np.zeros(img.size, dtype=np.uint8)
# Draw the boundary of the lesion on the mask
for i in range(len(points)):
y1, x1 = points[i]
y2, x2 = points[(i + 1) % len(points)]
if y1 < 0 or y2 < 0 or x1 < 0 or x2 < 0:
return
if y1 >= y_y or y2 >= y_y or x1 >= x_x or x2 >= x_x:
return
mask[y1, x1] = 1
mask = draw_line(mask, x1, y1, x2, y2)
# Save the original BMP image as a PNG file
img.save(save_path + image_name[:-4] + '.png')
mask = cv2.transpose(mask)
# Save the mask as a PNG file
mask_img = Image.fromarray(mask * 255)
mask_img.save(save_path + mask_name[:-4] + '.png')
def fillMask(mask_path):
""" fill mask png """
img_mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
img_mask = ndimage.binary_fill_holes(img_mask)
img_mask = np.float32(img_mask)
cv2.imwrite(mask_path, img_mask, [int(cv2.IMWRITE_PNG_COMPRESSION), 3])
def processingBatchCRO(file_path, save_path):
"""
:depict processing batch bmp and dat file to png file
:param file_path: str
:param save_path: str
:return: bool
"""
print("Begin process batch")
filename_list = os.listdir(file_path)
bmp_file = []
dat_file = []
for i in filename_list:
if i[-3:] == 'bmp':
bmp_file.append(i)
elif i[-3:] == 'dat':
dat_file.append(i)
i, j = 0, 0
while i < len(bmp_file) and j < len(dat_file):
if bmp_file[i][:6] == dat_file[j][:6]:
print('Process', bmp_file[i], dat_file[j])
transformImage(file_path, bmp_file[i], dat_file[j], save_path)
j = j + 1
else:
i = i + 1
def processingBatch(file_path, save_path):
"""
:depict processing batch bmp and dat file to png file
:param file_path: str
:param save_path: str
:return: bool
"""
print("Begin process batch")
filename_list = os.listdir(file_path)
bmp_file = []
dat_file = []
for i in filename_list:
if i[-3:] == 'bmp':
bmp_file.append(i)
elif i[-3:] == 'dat':
dat_file.append(i)
i, j = 0, 0
while i < len(bmp_file) and j < len(dat_file):
if bmp_file[i][:3] == dat_file[j][:3]:
print('Process', bmp_file[i], dat_file[j])
transformImage(file_path, bmp_file[i], dat_file[j], save_path)
j = j + 1
else:
i = i + 1
def fillImageProcessCRO(file_path):
print("Begin process batch")
filename_list = os.listdir(file_path)
for i in filename_list:
if i[6] == '_':
print("Process", i)
fillMask(file_path + i)
def fillImageProcess(file_path):
print("Begin process batch")
filename_list = os.listdir(file_path)
for i in filename_list:
if i[3] == '_':
print("Process", i)
fillMask(file_path + i)
if __name__ == '__main__':
# Original file path
file_name = [r'K:/DataSets/SIPaKMeD/im_Dyskeratotic/',
r'K:/DataSets/SIPaKMeD/im_Koilocytotic/',
r'K:/DataSets/SIPaKMeD/im_Metaplastic/',
r'K:/DataSets/SIPaKMeD/im_Parabasal/',
r'K:/DataSets/SIPaKMeD/im_Superficial-Intermediate/']
# Save path
save_path = [r'K:/DataSets/SIPaKMeD/png_Dyskeratotic/',
r'K:/DataSets/SIPaKMeD/png_Koilocytotic/',
r'K:/DataSets/SIPaKMeD/png_Metaplastic/',
r'K:/DataSets/SIPaKMeD/png_Parabasal/',
r'K:/DataSets/SIPaKMeD/png_Superficial-Intermediate/']
for i in range(5):
processingBatchCRO(file_name[i] + 'CROPPED/', save_path[i] + 'CROPPED/')
fillImageProcessCRO(save_path[i] + 'CROPPED/')
for i in range(5):
processingBatch(file_name[i], save_path[i])
fillImageProcess(save_path[i])

魔乐社区(Modelers.cn) 是一个中立、公益的人工智能社区,提供人工智能工具、模型、数据的托管、展示与应用协同服务,为人工智能开发及爱好者搭建开放的学习交流平台。社区通过理事会方式运作,由全产业链共同建设、共同运营、共同享有,推动国产AI生态繁荣发展。
更多推荐
所有评论(0)